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FOREWORD

This study was undertaken to investigate the feasi->1.
ating a very large underground structure from the effects
1d motion resulting from nuclear explosions._ ‘While size -
ot be a. critical: paraneter in the. performance of.a shock
°m, the oversight of practical design requirements-tend .
‘serious as size is increased. 'In- view of the lack of an -
mprehensive tandard of performance which might serve as
“design of such systems, the question . of feasibility is
his study by a close examination of .all factors which" ,
. lence . with smaller ystems has shown to be of significance.
. ln particular 3'amping. flexlbility of the supported.load, sloshing of-
-.1iguid filled:tanks, control’ sensitivity, and other. special design - -
considerations’ frequently given only'cursory attention are investigated
~nere in detail. 'The study is then carried: to the point where the basic
concepts are established and the equations of motion of the complete
.system formulated and presented in a: fonn permitting final optimization
}'and reflnementi - - A _ .
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isolation sys
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previous -expe
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ABSTRACT

The feasibility of shock-isolating very large manned underground
structures from the intense ground motions generated by a nuclear blast
was investigated., The structure under consideration housed personnel
living quarters, and communications and survival equipment, including
large liquid-filled tanks, and was suspended within a concrete-lined under-
ground cavity. Various suspension configurations, isolators, and damping
devices were investigated and their performance characteristics compared
with the specific requirements of this facility, It is concluded that an in-
clined, elastic, pendular suspension system incorporating flui<d-filled ’
isolaters and force-limited dampers provides satisfactory control over the
body motions without exceeding acceptable accelerations, Conventional
cage structure and liquid s;f:.orage techniques are found to be acceptable if

careful attention is given to their design,
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’systems ha een bullt to protect equlpmcnt and personnel houoed 1n

due to nucle I explovlon Altnoubh the sy stems vary widely. wlth
ze, the erv1ronment. and.attenuatlon Lheir design 1n

.'general ha
Hohy ance operatlon maintenance, and rellabllity Despite. :
#ob jectives, however, the wealth of accumulated design and
1éxperience has yielded no comprenensive accepted definltlon
age requlrements 1n terms of system deoign criterla. -

As a_reSul _”anJ GYiotinb stteme have been plagued bJ numerouv defl-
_ciencies whih have detracted from the convenience and flexibility of
operation, ldve increased. maintenance, have reduced reliability, or
have compr_A>_ed ‘the degired attenuation. '1n most instances these

'7 fave been corre"ted at least in part by later modiflcatlons

"1 however hae been a reductxon in conf;dence not- onlJ :

he use of shock iuolation systems to even 5reater sup-

nd bround acce*eratlons, these earlier experlences have -
raised the ¢ estion as to whether or not there exists a practical limit
to the size:of reliable systems. The doubt inplied bj the question
stems from:a@simple extrapolation of the magnitude of the problems
encountere existing designs to larger and more expensive systems.
It is recog_‘Zed that size per se is not a critical factor in the per-
formance o ',Hshock isolation system.. However, larger sizes do amplify
the seriousnéss of the: omission of features which should be included

"~ in all des 1§%% whatever their size. The more fundamental question,
then. is wne her or not thorough and systematic engineering techniques
are sufficieént to achieve reliable and economically feasible designs

~and to avoid%}he problems encountered in the past.

ocedure fbr a shock 1solation system can be divided into
selection of configuration and isolator elements, analysis
sponse, and detail mechanical design. Wnile there is some
in general, ‘these three phases are carried out consecutively
'shown. It is believed that the principal problems arise ‘
T thoroughness in formulating the basic concepts of the

45, in the first phase of the design procedure. The

ystem components and their arrangement imust be made not
only on the basis of output acceleration and/or rattlespace requirements
but also on the considerations of sensitivity to input, static stability,
effects of loading and temperature changes, damping characteristics,
controllability and other factors relating to performance. 1In addition.
the element ‘themselves must be compared with regard to mechanical

The design. 1
three phase:
of dynamic:
‘overlapping
in the orde:

_ from a lac
vvtem, tha
selection o
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effects of manufacturing tolerances and aging on perfor- .
_opment cost and time. Only when a system and each of
ias passed a critical examination from each of thece

ld an analysis of the dynamic response of the system
tempted.

reliability,
mance, and dev
its c0mponent9

as a whole beL

ndertaken specifically to investigate the feasibility
\ng very large underground structures. - To demonstrate
.ypical structure vwas assumed and a ohOCK isolation .

‘ted on the basis of detailed studies of configurations
E,uations of motion for the complete assembly were then
ot solved,there being sufficient confidence placed in
he preliminary analyses to assume that the final analysic
isentially of refinement and optimization.

This study was
of shock isola
feasibility, -
system was sel
and component
formulated but
the results of
would consist

blem areas which experience has shown to be of particular

The specific p.
whicn vere given special attentlon here are:

importance and;

. Selecti f of suspension system configuration

. 'Effect of amount and type of damping

. - Selection of shock isolator

. Requirewynts for leveling control

. Effect of cage flexibility

. Effect of sloshing fluids

Effect of air pressure loads on oscillating body

responce of pendulum

The shock iool' ed structure celected for consideration as typical of
one which mightibe used in a large, deep underground protective facility
consists of a.cylindrical cage, 75 feet in diameter and 145 feet high,
divided vertica;ly into eleven stories. The cage is assumed to nouse
personnel, their living quarters, and communications and other light
electronic gea The bottom floor contains waste storage equipment.

The cage is enclooed in a thick walled cylindrical capsule with a
spherical dome: and ellipsoidal bottom. The capsule is made of heavily
reinforced concrete of sufficient strength to resist the ground motions

and to carry the isolator loads.

To provide some basis for calculating weight, weight distribution,
structural rigidity and other parameters of the physical configuration,

a structural arrangement has been assumed and is described in Section 6.
Conventional structural design practices have been employed wherever
possible in order to preserve the general applicability of the conclusions.

The peak motions of the shock to which the facility is considered to be
subjected were furn.shed by the Air Force Weapons Laboratory and were
established quite nrbitrarily. For the most part, the details of the
ground motion are of little significance as far as the design approach
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2.0 DEFINITION OF GROUND SHOCK

For a given shock strength, the size of the shock
isolated level should not be a factor in determining whether or not the
system is feasible. However, within broad ranges, the suitability of a
particular type of isolation system may be dependent on the magnitudes
of various parameters of the input motion. To enhance the usefulness
of the studies of particular isolation system elements, therefore, peak
capsule motions were selected so as to be representative of the order of
magnitudes of those that might be expected in a practical design. These
motions, furnished by the Alr Force Weapons laboratory (Reference 1)
are shown in Table 2-1.

Table 2-1 Assumed Peak Motions of Capsule

Displacement Velocity Acceleration
inches feet /second Gravities
Horizontal 22 32 71
Vertical 34 38 Gl

Reference 1 also suggested that the general shape of the waveform be
assumed to be as shown in Figure 2-1. If it is assumed that the per-
manent set of the capsule after the shock is negligible, the areas under
the positive and negative parts of the veloclty curve are equal

v
= max
=>
5 l time "t"
£
o
Q
g \/7
~
L -
tl to

Mgure 2-1. Suggested Waveform Shape for Capsule Motion;
Velocity vs. Time.
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and it is only necessary to estimate t; and t,. 1In the final analysis
of the dynamic response of the isolation system, t; and to would be
varied to find the combination which was most critical for the system.
For this preliminary analysis, it was considered sufficient to assume
t) was about 0.1 seconds and t, was approximately 3t;. The shape of
the curves were then adjusted to give the required peak displacemert

and acceleration.

The resulting vélocity curves are shown in Figures 2-2 and 2-3 and their
response spectra in Figure 2-k.
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YSTEM CONFIGURATIOV

3.1 1on oyutem Requlrement°
_ Optlmum performance of an: ioolation system is usually
considered, plications of -this type, as a condition of minimum dis= -

eolated-bodyirelative to’ its surroundings yet remaining
ation limit at’ dny'p01nt on the body. Performance must

only for a u:mgle set of shock and body conditions, but

s of varlation° in the shock, load, center-of-gravity

tolerances,-and similar factoro which theory and

wn to be aignificant '

placement of
within an ac
"be optimized
also for the:
- location. co
practice hav

elative dlsplacement as a measure of. optimum performance
ssumption that the cost of otherwise unused space in a
1gher than the. cost of the additional refinements needed
in the isolatidn system to obviate the requirement for the rattlespace.
Obviously théré&must be a limit as to how far a design optimized with
‘respect -to ec ;;m' and reliability cdn proceed in this direction.. An
“arbitrary lim .f'1mp11ed in many design criteria, fixes the maximum per-
missible rattléspace equal to ‘the- single-degree-of—freedom responge of

a linear is oi'%%on system in thatdirection. '

The selectior
ic based on' t
capsule is mu

Iv is evident that this criterion has no direct relation to either of the
more fUndamenf%ﬂ ‘optimizatinn parameters--economy and reliability.
Instead it re Pesents the minimum possible relative displacement of a
completely ufé%tpled linear. undanped system. Since, ‘from a practical
viewpoint, it ﬂfalmost impossible to avoid all coupling in a system,
upled, undamped rattlespace allowance must be viewed

the linear, u
as a goal whi i an.be achieved only at considerable expenee.

In a given six egree-of-freedom system incorporating linear or near-
linear isolat rs, the increasein maximum relative displacement of the
isolated bo ‘er ‘the sinple-degree-of-freedom value, obviously, is-
related to thewcoupllng between its modes of osc¢illation. The coupling
in turn is dependent on the geometry of the suspension system. It would
appear then t 3t the optimization process would consist only of selecting
a geometry. guc ;that the coupling is reduced essentially to zero.

1t is rarely, it ever, possible to achieve this desirable

of the center of gravity of the body, manufacturing

‘the angular displacements of the lines of action of the
during oscillations ‘all introduce coupling into an other-
wise uncoupléedisystem. 1t is important to note, however, that minimum energy
transfer bety i modes does not necessarily lead to minimum rattlespace.
of equal importance is the stiffness of the mode into which the energy is
transferred.. '

As noted abot
goal. Excurs
tolerances,
restoring for

©

For example, conglder a system subjected simultaneously to translatory
shocks along the three major axes. Although the translational modes may
be only slight}y coupled with the rotational modes, the stiffness in
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rotation may be very small., Thus the introduction of even small amounts
of energy into the rotational modes may produce greater excursions at
points far from the center of rotation than are introduced at the same
points by pure transletion. Rearranging the geometry of the suspension
may result in:'more coupling energy in rotation, but at the same time
increase the re51stance in rotation in a greater proportion with a net
effect of reducing the peak relative displacement at the eritical
location.

Whether or not a shock isolation system 1s to be fully optimlized from
the viewpoint of economy as an integrated element of a complete facility,
it is evidentdthat the design must begin by establishing the limits of
feasibility of suspension system configurations. At this stage of the
development if is sufficient to base comparison on criteria which, in
general engineering practice, are usually found to be velid. Such
criteria might be: ‘

Fad

1. Por a given total number of isolators, the fewer the number of
different sizes, the less the unit cost.

2. Aynear-llncar force-displacement characteristic is to be
preferred to a highly nonlinear one.

3. Passive systems, in general, are more reliesble than activc
systems. ”
L, Tension ties are less costly than columns,

Section 3.0 deals with the selection of a suspension system configura-
tion for a facility of the assumed size and loads and, for the
recommended system, establishes isolator performance criteria. 7Three
isolation systems are compared, all of the overhead pendulum type. 7he
overhead pendulum type of system has two distinect advantages. First,

it utilizes gravity as a horizontal restoring force, thus minimizing or
eliminating the need for edded horizontal stiffness. Second, by proper
design the pendulum arms are always in tension, thus minimizing their
veight and cost. While the load must be carried eventually in
compression to the base of the structure, the thickness of the enclosing
capsule, dictated by requirements other than shock isolation, 1s usually
well suited and easily adequate to support this additional burden. The
only areas requiring more than nominal special attention are the locations
where the pendulum loads are transferred to the capsule.

Although straightforward enough, it is believed that the approach teken
here to compare the three suspension configurations is unique to this
application. Since even with a slightly eccentric center-of-gravity
location, rotation about the vertical axis does not contribute signifi-
cantly to the horizontal rattlespace requirement, it was considered to be
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justified to reduce the systems for preliminary comparison to three
degrees of freedom, translation in the vertical and horizontal modes,

and rotation about the horizontal axis. Equations are then formulated
which not only: indlcate the coupling between modes, but also system
stability. The ‘equations are then compared, term for term, and numerical
values are established for the two most promising systems.

The amount and type of damring are evaluated as to their applicability
to shock 1oolation systems. Specific damping recormendations are then

made.

“he work of Section 3.0 establishes, tentatively, the system
geometry and the performance characteristics required of its elements to

attenuate the design shock to the acceptable level within a space envel-
ope believed to be near optimum from the viewpoint of overall simplicity
of design. Final verification of the capability of the selected system
to perform as expected can be obtalned only by numerical solutions of

the complete quationo of motion.

13
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3.2 Evaluaéion of Types of Pendulum Suspension Systems

3.2.1 Typeg‘of Suspension Systems

: The response of a shock isolated body is directly
dependent upon the arrangement of the suspension system and the character-
istics of the elastic elements. For bodies of different proportions
different isolation systems are needed to minimize the resionse. In many
applications the most suitable system consists of susperding the body by
an elastic spherfcal pendulum, thus offering isclation in the thre.
principal directions. Because of the limitations usually imposed on the
space allowed for the movements (rattlespace), the engineer is faced with
selecting the isoletion system which will require minimum rattlespace
without exceeding at any point on the body a maximum permissible accelera-
tion.

The response of ény isolated body consists of translation of and rotation
about the centerJOf gravity. FEven though the ground motion is usually
considered to induce only translation without rotation, the suspended body
may be excited in the rotational mode by coupling with the translational
mode. The selection of the suspension system and the rattlespace is
usually governed by this coupling. For example, if the body to be
isolated is spherical in shape, translation of the center of gravity
governs the rattlespace allowance. If the body is oblong along one of
the horizontal axes, like & thin rectangular plate, rotetion about the
vertical axis usually governs the requirements for rattlespace; while for
a body oblong along the vertical axis, like a long vertical cyiinder.
rotations about the horizontal axis play an important pari ir Jces.ing
rattlespace. :

For a tall cage structure, as in the case assumed here, the suspension
system should satisfy the following objertives:

1. Minimize the coupling between translational and rotational
modes. ;

2, Increase the stiffness in rotational modes.
3. ©Stabilize the system over a wlde range.

Three basic typesiof suspension systems to achieve the above purpose arc
consldered here,

1. One level suspension with vertical pendulum arms and horizontal
isolators (Figure 3-la).

14
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2, One’ el suspension vith inclined pendulums (Figure 3-1b).
The horizontal isolators are eliminated by inclining the vertical
isolators, which are attached to the body at the same 1eve1.

e 'el suspension vith inclined pendulums (Figure 3-lc).
The body is suspended by means of tvo series of isolators: one series
attached at a- level above the center of gravity and the other at

a level below‘tﬁe:center of gravity. The attachments of both series of
he capsule wall are at the same level. In configuration
1 and 2, the center of gravity is shown above the level of suspension
to account ror s hlghest possible position,

As the evaluat' -of the three configurations is based upon a qualitative
"rather than a quantitative analysis, the complexity of the system isreduced
by limiting consideration to fewer, but important, parameters affecting
the response of.the system. The rotation about the vertical axis does not
affect the rattlespace requirements because of the cylindrical shape

of the cage st' cture. Hence, the system is reduced to three degrees

of freedom in ‘a’plane configuration. Furthermore, damping is neglected
in this analys‘ ince it deces not (fTect tne coupyling vetveon dllierbhu
modes. This 1 to « conservotive estimute of ot ollit, . e eguutlions
of motion for ¢ nerul cuse, wnd for cuch of the gorvlel ¢ e lses, ure
derived in Aspendix 3A. .

- 3.2.2 Eguations of Motion for Three-Degree-of-Freedom Configura-
tions - . . .

The generalized coordinates chosen for the three-
degree-of—freedom system are as follows:

instantaneous length of the resultant pendulum

inclination angle of the resultant pendulum with respect
to the vertical axis.

rotation of the supported mass about the center of
gravity. .

The general eqf tions of motion are presented here with the following

1, Damp' g is not included.

2, Effectlof rotation of the body about the center of gravity on
;stiffness is of second order, hence neglected.

3. Centrifugal and coriolis’accelerations are neglected, because

of their second order effect. i . b T

b, Spring stiffness is linear,

MR Best Available Copy




X cos ¢n(r3‘sin ¢n -r

\L e - . -
1 08 ¢n); + (mZo mg) =0

(Eq. 3.1)

18°) sin ¢ + (2m£¢ + mfﬁ) cos §

sin g ({ -.L )}

sin §_ (r3 sin §_ - r, cos ¢n)} + (mio) =0
(Eq. 3.2)
1B +[{ K ;'3 sin §_ (in - '“n o) - r, cos ;2511(1n -n’i‘noi}_}
Kn E'B sin ¢n - ry cos nj, 2} =0 ) N

(Eq.73.3)

vhere the following conditions are to be satisfied for ’ﬁn and ¢ n for nth

isolator

’En sin¢n =isin ¢ + 'éns sin # _
’{‘n cos$?5n = (cos ¢ + 'ens cos ¢n g " és (Eq. 3.4)

S
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The above equations are transformed into polar coordinates, neglecting
centrifuzal and coriolis' accelerations, as follows:

‘: K, cos ¢n=' 5

& BB+ cos (B - 8) =0 (Eq. 3.5)

P
-

<
0

Doypee

PPN my s |
£ 1d) Kr.l K& ¢ [a
B +g F 2 Al S e }
“aRf(<+r)  H nR mR( (g r.)
2 ol
Kr K :C!
+B{§ > n};} =0 | (Eq. 3.7)
“ mR mR
where P =(¢- ‘s)
()? = (2)% + (%)
k0
tan §_ = "Z“'
(o]
] = stn ¢ns(r3 sin § o - 1) cos § ) )
[ - (r3 sin ¢ns T T co8 ¢ns)2
Li] = (r3 cos ¢ns + rl sin ¢ns)

Ir ¢o>>¢, then

U cos (¢o- @) = U, cos ¢o =2
and U sin (¢0- @) = U, sin ¢o = X

The coefficients in the above set of equations are evaluated for each
configuration and are shown in Table 3-1.

18
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p+D6P

Table 3-1

Coefficients for Equations of Motion

= -7
o
b 8{n e en) ee (s - X/
a J D- ! " =
p+@{D] P+ +e{Dy; =0
Where
" K cos ¢
p =¥ b ns
o 7 m
D =Z Kn cos ¢ns - Kn cos ¢ns
1~ g mlZ +r31 T m”;s]
J K ZK cos ¢n s
D =Z——- + - -
Kr K (6]
p. =Y 23, Z"‘T"n
3 H Mg I ™%
K [a £
D! =Z._£2.___§__
1 1mR (L r3)
I a9 4
o =ZKr L s Kngd_ 6nsis
2 H R ImRa([+r3)
Kr 2 K [c}
D' =2_n2? +Z n 3
H mR I mR
b =sin § (r3 sin § - v, cos Boe)
e’ = (r3 sin ¢n - r, cos é s)
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(Eq. 3.9)

(Eq. 3.10)
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Table 3-1 (Continued)

Coefficients for Equations of Motion
Configuration 1
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Dl

D'

Table 3-1 (Continued)

Coefficients for Equations of Motion

e

m(?“"s&z)

2K¢2(r + 52¢2)

md
K(a, 19,4,
mRzz:(,Qs+ az)

210 (a,- 18,04,

mR??f; az)

2K(r + a,8,)7

e

[T LN, U WL W S .

Configuration 2

2l
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Table 3-1 (Continued)

Coefficients for Equations of Motion

Configuration 3

o
L}

2
n

2
"

=
"
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3.2.3 EValuation of Types by Comparison of Coefficients

Eq. 3.8 indicates that, in a first approximation,

A
is uncoupled with either ¢ or B, which means that the effect of horizontal
oscillations on the vertical mode is of second order. As the natural
period of the system is long with respect to the period of the shock, it
can be reasonably assumed that the critical conditions occur during
residual oscillations. In which case, Eq. 3.8 becomes

P+ D,0=0

which is a linear differential equation of second order with a particular
solution '

g = éo cos Wt
where Fg is fhe maximum amplitude of -.

Bq. 3.9 .
p+ @ (pp+D,) +8(D) =-p

is coupled with p and B, which means that @ mode is excited by the ground
acceleration XO and part of the energy is transferred in B mode. The flow
of energy to P mode can be reduced to zero by making coefficients D3 = 0,
or can be minimized in proportion to minimization of D3-

For Configuration 1, D, can be made zero only when a5 = a)- For the fixed
location of center of gravity it is possible to mainéain the equality
between a, and a). Unfortunately for the structures of the type considered
here, the center of gravity car be expescted tc shift from 1ts neminal posi-
ticn, which In turn makes 33 7-f a and coupling is introduced.

For Configuration 2,‘D3 can be zero when ¢2 =0 or

r + a2¢2 =0
[N . I'
o ¢2 - -a.2 , ¥

vhich means that the point of attachment should be at -a, = ié' above

the center of gravity. If @, is small, a, can be extremely large and
may be beyond the limits of the structure. For large values of ¢, a
may be within the structura, but the condition r ¢+ a § = 0 cannot

be maintained when the center of gravity shifts. 2
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For Configuration 3, it does not seem possible to reduce Dy to zers, out
by proportioning the values of K; and Ko, ¢l and ¢2, ay and ap, it is
possible to reduce D, tc:minimum; not only for the nominal position of
center of gravity, bitt also under the condition of shift of the center of
gravity. Thie ic discussed in detail in Paragraph 3.3.2.

If D3 is reduced to the extent that 1t becomes negligible, then Eq. 3.2
becomes

¢+¢'(D2+Dlp)=-j[§

p + ¢ (D, + D P coswt) = - -09

-

For steady-state oscillations, this equation is known as Mathieu's
equation and the conditlon for stability is

2. 0h6% ¢
2 2 4
W 2w

(o]
Dl‘o

w e

O O O O O
=N W AN

=0
0
Figure 3-2. Ince-Strutt Diagram for Stability.

Referring to Figure 3-2, it can be seen that it is desirable to

Dl >
reduce - to zero, or close to zero, 30 that the suspension

[ A D
system is stable for all values of ~%. As g%-is finite for a given

e w*

system, D] should be close to zero.

o
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For Configuraﬁion 1, Dy will be zero only when a, is zero. As discussed
earlier, this is not possible when the center of gravity is ghifted from
1ts design loeaticn.

For Configuration 2, Dl will be zero when a, 1s zero which is not possible
as stated above.

For Configuration 3, Dy can be zero by properly proporticning 31 and 32.
For a small shift of the center of gravity, the summation of

K, - K

1 + 2
4 -al is 2

]

can be kept fairly close to its initial value ly properly selecging ay
and as. For example, if as 1s large and a; small, compared to .., small
variations in the values of a; and ap will not change the value of the sum-

mation appreciably.

Equation 3.10 is
- ' ' ' -
B + BD3 + ¢(Dl? + Dz) - O

If Di is made zero, the B-mode 1s uncoupled with @ -mode which indicates
that tie maximum amplitude of B is reduced.

For Configuration 1, Di can be made zero only when ao, = O which is
impractical due to possible shifts of the center of gravity as discussed
earlier.

. s,
For Configuration 2, D| can be zero when a, - r¢2 =0; i.e, Py = 7=
which is contrary to the condition needed ~ for minimizing D3, that is,
uncoupling the P-mode from the B-mode.

For Configuration 3, D] can be zero by proportioning the values of K,,
Ko, ays ap and f), P,." Due to the shift of center of gravity, one of the
terms of the expression

k (-8, -rf.) , K(a, -rf,)

[s- al ls * az

increases while the other term decreases keeping the summation fairly
constant. Thus, if Dy is close to zero for the nominal position of the
center of gravity, it will remain close to zero even when center of gravity
i5 shifted.

If D 18 made zero, the B-mode is uncoupled with the P-mode, which
meansd the maxdimum amplitude of g will be further reduced.

For Configuration 1, D! can be zero only when a

=0
which 1s impractical ag discussed before. 3 ’

= ah and 32

25
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For Configuration 2, Dé can be zero only when as -r¢2 =0; i.e.,

a_ =
.._.3.‘5
¢2 T r?’

which is contrary to condition required for reducing D3 to zero.

For Configuratig? 3, D> can be zero by proportioning the values of Kl’
K2, ay, 8, and i , 5% . Due to the shift of the center of gravity, one

of the terms of the expression
K0y (-8 -ry ) . KpBpy(, - 18,)
]; - 91 l% * a2

increases while the other term decreases, malntaining the summation
fairly constant.

In reviewing the above comparison of coefficlents of three configurations,
it can be seen that Configuration 3 offers the maximum flexibility in
reducing the required coefficients to zero or to the minimum :iceded tc
uncouple the various modes. The principal advantage of Configuration 3
suspension over tha other two types i1s the larger number of parameters
avallable for system adjustment to given requirements. This in turn
makes the system less sensitive to shifts of the center of gravity, as
compared to the other configurations.

3.2.4 Evaluation of Types by Comparison of Stability

The stability criteria of the system subjected to
vertical and horizontal input simultaneously are very complex to derive.
For preliminary sizing, a simple approach is taken by considering ver-
tical and horizontal inputs separately. For inclinedinputs (i.e., ver-
tical and horizontal inputs acting simultaneously), the method of deri-
vation of stability criteria is outlined.

3.2.4.1 Stability for Vertical Input

The equations of motion are:

p+DP= -'20 (Eq. 3.11a)
g+ ¢(Dle>+ D,) + B(D3) =0 (Eg. 3.11b)
B+ #(njp+Dy) +p(D)) =0 (Eg. 3.1lc)

2L
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For residﬁél oscillations,

m

- = €. coswt  where wz =
A Y o

If D3 in Eq 3.11b is negligible, then Eq. 3.11b becomes

¢ + #(p, + D ¢, coswt) =0 (Eq. 3.12)

This equation can be converted into the form of Mathieu's equation.

¥ + y(\ + 2h cos 2x) = 0
. o

fat 2

b _a . ap
2

dt dt

let wt =2 X,

n
=€,
|

Hence Eq. 3.11b becomes

=
o

. + + =
" ¢(D2 D, £ cos x) =0

91_zﬁ . g hDZ . th,Oo

2 w2 w2

lcos 2x)= 0O

(Eq. 3.13)
The condition for stability is:

2 I)lo
or — + —=35<1/4 (Eq. 3.14)

27
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Configuration 1

%, 63~+§q{___1____1_1/;
7+ / ~ )
KV Lyt 8y 2 is ta, A 1
2Ky
1 Eg _Bo 1
K " +a 16 ¥ 77 Sk (Eq. 3.15)
v s 2 3
Configuration 2
) (
s 0 1 1 % 1
+ 5= el N
Ly t 8y 2 i’és ta, ts g
1 - Po A P 1
- .
(§. + o r - o < ¥ (Eq. 3.16)
<% + a2 L s 2 2,% +
Configuration 3
i B TR T Po - Kl Lo & AP
/- s \ - = )
K*K 48 K Ko <" 8, Z(Ki+ K ‘ 3) 5T 3 s "

l& 1 +f9_ + Kz ' l 'fﬁ +.P_Q_‘}_._'€9 <l
Ki+ 45- ay 6ls 2 Ki+ Ké zs+ a, 1“25 2 j 2. 4

Comparing expressions Eq. 3.15 and 3.16 for stability, it can be secen that
they are comparable, except that Eg. 3.15 contains the additional term

2Ky

v

Configuration 1 can be made stable by satisfying the relationship expressed
by Eq. 3.15. Configuration 2 will be more stable than Configuration 1 for
the same values of 89 Kh and as.
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3.2.4.2 Stabllity for Horizontal Input

The equations of motion become

it Dof =0 y (Eq. 3.18a)
¢+¢§%P+%)+aw§=-fi (Eq. 3.18b)
B+ '(Dif’ + D) +p (D)) =0 (Eq. 3.18¢)

In the flrst approximation, it seems reasonable to assume that because of
zero vertical input the P-mcde remains unexcited, in which case Eq. 3.18 b
and ¢ become

g+ ¢(D)+B(D)

-

. .0 (Eq. 3.19a)

]

=

(Eq. 3.19b)

1]
o

B +¢(Dé) +B (Dé)

Taking the laplace T?ansform, ve get
£ [-—

B+XD'B+ ng =0

s? ¢4-I)¢ +D

The freqpéncy determinant is

2
S + D, D3 o
1 2 ] B
Dé S+ D3
(s? + Do)(s? + D') - DéD3 =0
)
+ + D') + ' - D!
S s? (D ) D2D3 D2D3 =0
, ) :
Let a D% + D3
= ' o ]
and b (D D3 Dzn )
The frequency equation becomes
s*+as? +p =0 (Eq. 3.20)

29
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The solution of the equation gives

2
a + /{a)
S = - -é- -— (-é-) - b (Fq. 3-21)

The stability or instability of the dyramlical system depends upon the
location of these roots in the complex S plane. The roots of the poly-
noniial Eq. '3.20 are complex numbers of the form

- + 4
si ;61 1ogs

which gives the solution of Eq. 3.192 and b in the form

g SRR’
B B Az ° (ch 3-22)

If the real part 51 of the roots Si is negative numbers, the temm,

efit , acts as a decrement factor in the solution of @ and 3 and the
solution is stable. If, however, one or more roots, S, ;7 has a positive
real part, the solution for Eq. 3.22 will contain the ewponnntially
increasing factor
bit
e

and the system is unstable. If the real part of the root, S 12 is zero,
the system is on the borderline between stability and instabxllty.

The Routh-Hurwitz stability criterion states that, for all the roots to
have negative real parts, the coeffliclents a and b in Eq. 3.20 must be
positive. This can be inferred directly from Eq. 3.21 when

b>0

a. fa 2
§>' 5) -b

and S will have two distinet roots. The particular solution of Eq. 3.20
will give the roots contalning an imaglnary part only because of the
abgsence of damping in Eq. 3.19a and b.

Condition 1

a> b
(D2 + D'3)>O
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Configuration 2
2K

s 2K 2
m(f*+ a,) g (r +a,6,)" >o0 (Eq. 3.22a)

Configuration 3

2 [Kbig Kby, }
2

2 2
1 —% {K-L(r - al¢1) + Kz(r +ad,) } >0

R
,. m (Eq. 3.23b)
It can be szeen that these conditions are satisfied by both configurations.

Condition 2 -

b >0

(D,D5 = DD;) >0

Configuration 2

,

L K  k 2 Ko (a,- 1)) \

= 2= (r+af)° - =5 K¢(r+a2¢)>0

2 7 + 2 2 2 2 2 2

m { s %2 R R (£s+ az) (Eq. 3.2k4a)

Configuration 3
L { K161s + K2625 K.L (r - af
mzi L -a ,{'s+ a 2 11
}Klals('al' %) . Ko02s(ap" 18,)

s 1 2 R
| ORUa)  RiLray

tKBplr +a )| p>0 (Eq. 3.2Lb)

Comparing Eq. 3.2la with Eq. 3.24b, it can be seen that Configuration 2
will satisfy the conditions of Eq. 3.2L4a up to certain limits of ap, after
vhich DJ,D3> ng' and the system will become unstable. Configuration 3

will safEiofy hé conditions of Eq. 3.24b without any limit on ap, as D} also
contains -aj to compensate for high values of ap, if any, 2
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Another interesting basis for comparison is the range of stabilities.
As it is evident that both configurations are stable within certain
limits, the criterion that one of the two configurations is more stable
or is stable within a wider range than the other can be used as an addi-
tional basis for comparison and selection. Condition 2 states that
b = (DzD' - DéD3)>>O, which can be interpreted thus: the larger the value
of ( 1)2D'3§i up to the limit,

2 b

b=%—,
the better the'system will be from the viewpoint of stability.

For the configﬁ}ations under consideration, the values of D, and D!
are always posiﬁive. Hence, the greatest value of b will be achie;ed
vhen either D! or D_ is zero;

2 3

o) = D D!

m 23
’ 2
D + f
RN
.o - - - /‘ o
2 2 23
2 a - A
$,°=-0D,, (ol)l,2 = + [A\/D2

o
1l
1+

2 == D3y (8)y ot i, [0
A1 coé\[ﬁg't

and ;3 = A2 cos Dé t

RS
1

This shows that Eq. 3.19a 1s uncoupled with B and Eq. 3.19b iz uncoupled
with the pendulum angle,¢. A similar conclusion has been drawm by com-
paring only the coefficients in Paragraph 3.2.3, in which it is shown
that Configuration 3 is better than Configuration 2 due to various para-
meters available to make Dé and D3 close to zero.

Hence, from the above discussion it seems that Configuration 3 offers a
wider region of stability than Configuration 2. In addition it minimizes
the flow of energy from one mode to another when various parameterc ara
properly proportioned.
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3.2.4.3 Stability for Inclined Input

For a shock input which has both horizontal and

vertical components, the equations of motion become

o -y
P + D Zb

g + ¢(D°+D)+B(D)

><I

Ul

B +¢;fy(DiP+ D}) +p <D§) 0

For residual oscillations, Eq. 3.25a gives

Hence, Eq;i3.25 b and ¢ bhecome

) +¢(;D1'% coswt + D,) + 5(])3) =

g +g(D! |J cosftt + Dé) + B(Dé)

The above equations can be reduced to
substitution

g8, 6, =4,

B =8 > B, =B,

Eq. 3.26 aiand b become
3,48, (0,6, costut + D) + (D)
g, -4,

B, +-¢1(I5(; coswt + D%) + Bl(Dé)

61'52

(Eq. 3.25a)

(Eq. 3.250)
(Eq. 3.25¢)

(Eq. 3.26a)

(Eq. 3.26b)

first order by making the

o




WL TDR 64-53

This can be repfesented in matrix form as follows:
- - = a2 r - - -
‘ - l
ﬂzl 9 0 -1 0? ¢l .0
1 . ' O
b | o 0o o B O
! ! ‘ , .8
i¢2 (D, Pcos ut + _DZ) D3 O o0 ¢2 1
[N =
. ' 0 ~ ' ' !
B, L(-Dlxloco.a wt + Dz) D3 0 o |, O (Eq. 3.27)
- i . - - w k2
These equations can be written in the general form
. d O TR
_— K = - . o OO
= } | {* { Xo/"sj (Eq. 3.28)

vhere [ A] is the general column vector of n elements ¢1, B,y Bys Bos
and {u] 1is the Squage matrix of n~ order. In general, the“elements,
Uij’ of the matrix [u] are either functions of the indepenient variable t
or‘constants or both.

The differential equation 3.28 may be integrated by means of the Peano-
Baker method. lLet the initial ccnditions cf the system be such that

{h}z{Kfo
vhere {A} 1s the column vector of initial values of elements of <\ }.
Direct ingegration of Eq. 3.28 gives the following integral equation:

c ) _ Mt (k; 7
URLSY) [[“‘@J {*} *U‘;}} *

~here ¥ is a subsidiary variable of integration. This integral equation
may be solved by repeated substitutions of { A} from the left hand member
of Eq. 3.29 into the integral. Because of the repetitive and tedious
method involved in the solution of the equations as shown above, an
attempt has not been made to solve Eq. 3.26 a and b. The method of
approach is indicated, however. '

at t =0

(Eq. 3.29)

3.3 Selection of Recommended System

3.3.1 Basis for Selection

Based upon the discussion in the preceding paragraphs,
the isolation system of Configuration 3 is recommended because of the
following advantages:

1. Reduction in coupling between different modes, assuming proper selec-
tion of critical parameters, wiich reduces rotatiorns.

34
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2. Insensitivity of the system to shifts in location of the center of
gravity.

3. Increase& stability due to two levels of suspension.
k. Reduction in the effect of eccentricity.

5. Rapid restoration of the system, even when highly disturbed in
rotations.

3.3.2 Design Parameters

E The discussion of Section 3.2.3 shows that, for
Configuratiop 3 to have these advantages, it is necessary that

a. D should be zero or minimum

3
b. Dl should be zero or minimum
c. Di should be zero or minimum
d. Dé should be zero or minimum.

However, it i1s not possible to satisfy all the conditions simultaneously.
The most important condition is that D_ should be minimized, which means
reducing the coupling between translat%onal and rotational modes. For

Configuration 3
D3 = K.L sin ¢l (r cos ¢.L -8 sin ¢1) “+ K2 sin ¢a(r cos¢2 + a, sin¢2)-

The variables of this function are not independent, but are related by
the following equation:

= 'mg:‘
D, = K8, cos ¢l + K8, cos 4, > =0

To find the minimum value of the function D
Undetermined Multipliers can be used.

3? lagrange's Method of

Let D, = f; (K}, K,) (Eq. 3.30a)
and DL = f2 (Kl’ KZ) =0 | : (Eq. 3.30b)
If D3 is to have a maximun or minimum, it is necessary that

oD )

-3 =0, — =0

K 3K

1 2

35
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ance

(R (o :

Differentiatinw the functional relation Eh, we get

< oD, di&: (aDl‘ =0 (Eq.

[

Multiplying Eq. 3.32 by the parameter A and adding the results to
Eq. 3.31, we obtain

oD BDh'f ‘QD 2p,
‘ t -
[?Ki -——! Kl L + A 52; l:dK2 =0
4
This equatidn is satisfied if

aD 3 oD C]
5—3 Dh =0 and == + —EE =0 (Eq.

Ki Kl axz aKé

3.31)

3.32)

3.33)

For the unique value of A, the following condition is to be satisfied:

2D /azc _ snj/axz

aq/arcl 30, /2K, (Ea-
Now

aD

§Ef = sin ¢l (r cos ¢1 - a, sin ¢l)

aDb

5E§ = gin ¢2 (r cos ¢2 + 32 sin ¢2)

]

5;% = 8, cos ¢l

o

5;% =8, cos ¢,

The relation of Eq. 3.3k gives

sin ¢1(r cos .- a, sin§,) blcos ¢,

sin ¢2(r cos ¢2+ a, sin ¢ ) dc0s ¢2

su

3.34)




WL TDR 6@#53

E’l-.: tan @, |r cos g, - a, sin ¢,

62‘;‘_‘; tan ¢2 r cos ¢2 *+ a, sin ¢2 (Eq. 3.35)
As the function D, is linear in K and K,, the above relation obtained
by lagrange's MetHod of Undetermified Mul%ipliers is not adequate to
obtain the minimum with and K, as variables, hence the following addi-

tiocnal i'elation 18 introdilced.

y \ !
' E
A
/
y v Ls
A \
A h
y \
1 \
y -al \ L
A Cego 3 \’ﬁ
y
A \
/ rp2 \
A N
A h
A N
A a'2 h
A \
/ \
A \
A \
A S
V. N
Y N
y N
V. N
vz

Figure 3-3. Configuration 3 Notation.

Klal . sin ¢.L +a, = KB, sin ¢2 . &,

6
.1 K sin¢2.a2

° 6—2--_-’(181“{61'8‘1 (Eq. 3.36)

tan 4, {r cos §, - a, sin ¢1} K, sin ¢2 a,

tan g, rcos¢2+azsin¢2 =-K-1- sin §, -aI
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ﬁ 8, sin ¢1 tan g, 1 cos § - a, sin g, o
K, “a, "’ -

s 8, sin P, " tan @, ' r cos f,* a, sin g, (Eq. 3.37)

Compiling the c?bnditions to be satisfied, we obtain
a. D3 shoiﬁd be zero or mininum
Fq337 gives
: an & -
a5 sin §,  tan 2 cos, -~ &, sin g, _
‘8, sin ¢2 tan @2 r cos¢2+ a, sin g,

1

o S

or 'ffor small angles

2
j‘_l_ (¢l> Y - al¢l -1
‘a \&) Ve, 9, (Eq. 3.38s)

b. D shov.ild be zero or minimum

1
Kl . K2 ) Kl + K2
Zs- & Is+ 82 Lg (Eq. 3.38b)

c. Di should be zeroc or minimum
Kl(-aﬁ¢l) . E.Zjaz- 1'¢2) _
,@q— & by * 8, (Eq. 3.38c)

oS

i
(@)

d. Dé should be zero or minimum

Kby l-ayrd,) . Kobaslap- T #5)

- a
]

=0
1 <g ¥ By (Eq. 3.38d)

3.3.3 Calculations of Design Parameters

To reduce the coupling between modes and to increase
the statility of the system, it is desirable to meet the criteria in
Eq. 3.38 a through d. Owing to limitations on the various parameters
arising from practical considerations, it may not be possible to satisfy
all the criteria simultaneously. An attempt is made to satisfy most of
the criteria as closely as possible.
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Rattlespace is one of the parameters which is limited for economic
reasons. This in turn restricts the inclination of top and bottom
isolatirs. Considering various factors such as intensity of horizontal
~hock, movements of extreme points of the suspended mass due to rotations
about the center of gravity, and the space required for structural and
mechanical connections of isolators to the cage structure, a rattlespace
of 112 in. seems to be a reasonable choice. With a rattlespace greater
than 112 in., it is possible to reduce t{he coupling to minimum, possibly
to zero; but then the motion of the suspended mass will be contained
within a space much less than 112 in., which means that the available
rattlespace is nct used effectively. On the other hand, if a rattle-
space of less than 112 in. is chosen, the coupling may increase and the
movements of the mass may not be contained within the given space, hence
the ieolaiion may prove ineffective.

By a method of trial and error, the following parameters are selected
which appear to satisfy criteria, Eq. 3.38 a through d, closely.

a = 0.0 ft.
= 60.0 ft.

8.88 degrees

8, = 0.155 rad.

¢2 = 0,072 rad. 4,12 degrees

K = 2K

Foilowing are the constants of the system:

37.5 ft.
70.0 ft.

r

!

8

Criterion Eq. 3.38a

Kooy ¢1> r-a @, 1
K, " a, 5; "rra,f,

2 10 (0.155 10)(0.1 )
1'6o'<o.o ) 375+§ ;50072'} = 1.33
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Criterion EQ; 3.36b

K b +
1 _ . Ké _ Ki Kz -
js- 8 E£s+ 82 zs

0

2,1 .3
70-10 7o+60 70

0.0333§+ 0.0077 - 0.0428

-.0018 ¥ 0

Criterion Eq; 3.38¢

K (-a, - rp)) , K,(a, - r8,)

JZs-al 1; * a2

2 {-10 - (37.5)(0.155)} , 1 {60 - (37.5)(.072)}
70 - 10 70 + 60

- 0.526 + 0.440
-0.086 2 0

Criterion Eq. 3.38d reduces to equation 3.38c when
816 = O

P{gure 3-h shows the parameters of suspension system Configuration 3.

Lo
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Subscripts:
T = Top Isolators
B = Bottom Iso-

-7 // / izn lators
i Y]

9 ] -h|;‘-37' _61~i¢37' -6" |9| _u"

T0°!
Top 8.88°
Isolators 10°
! ;P.c_s . .Xl B |
Bottom
Isolato 60'| k.12 A
y
/
y .
/
/
Vs
/ Y
Vs
ELEVATION

Figure 3-4, Suspension System Configuration 3.
L]
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3.3.4 Numerical Evaluation of System Stability

From the viewpoint of pendulum stability as described
in Reference 2, it 1is essential, if resonance effects are to be avoided,
to insure that the pendulum frequency is less than one half the frequency
of the radial mass-spring system of the pendulum arm. The farther the
pendulum frequency is from this value, the greater the stability of the

system.

A good first epproximation of the stability of the configuration can be
obtained by reducing the system to the simple two-degree-of freedom,
undamped spring pendulum shown in Figure 3-5. By lumping masses and
stiffnesses, this model may be considered somewhat representative of
Configuration 1 without the horizontal sway dampers.

LLLLLLLLL L LLLLLLL

Spring A
' Stiffneses (k)

Mass (n)
‘///’—

Figure 3-5. Simple Elastic Pendulum

In this facility, two factors are [ixed: the mass of the supported
structure and the maximum acceleration to which the structure and its
contents may be exposed. These quantities then fix in a first approxi-
mation the uncoupled axial frequency of the pendwlum-spring combination
at:

<
"
= by

where the k 13 the stiifness of the sprin; licorporated in the
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pendulun arm.”

Referring to the shock response spectrum of Figure 2.4, a linear
undamped system of a frequency f = .35 cps will respond with a relative
displacement of 34 inches with an absolute acceleration of 0.42 gravities.
Then the stiffness of a single isolator is

k= mw e = 5.25 x 103 pounds per inch

-1
where

mass supported by each isolator = 1.09 x 103 1b. sec? inch-l.

33
1}

The natural frequency of the simple unsprung pendulum is

2 _§
ws =8

vhere 4 is the pendulum length; in this case the distance from the
center of gravity of the suspended mass to the pendulum upper attachment
point.

If a spring is incorporated in the pendulum arm, Reference 2 gives the
equivalent natural frequency as
*2

- A
uJo = 7%

where

(*r . ARrE
yi

Ic.g. = Moment of inertia of the mass about its center of gravity.

From a consideration of the peometry of the cage and the surrounding
capsule, there appears to be a limit of about 70 feet to the permissible
lenugth of the pendulum arme Since the vertical position of the center of
gravity of the mass may vary plus or minus 5 feet from the nominal posi-
tion, we have for the limits of length:
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,[ = {780L inches

900J

Using these numerical values

Io.g. (total system) = 3.62 x 100 1b. sec. in.

m (total system) = 13.1 x 103 1b. sec? in."1

RL = 276 in.2

we obtain

R T R,

: /L /é e oLe O /'“

i ! o) o o) 0 1

(10.) | (1) | (Rad./Sec.)?  (Rad./Sec.) |
T 783.5 |  0.493 ' 0.702 0.102
900 | 903.0 -J 0. h28 -~ 0.65k 0.089

The ratio (uJ* /LO ) is a criterion of the energy exchange between
the vertical and t%ﬂ horizontal modes, the critical condition being

w*z

It may be noted that the values given for this configuration fall much
below the critical value.

The degree of stability of the system can be shown graphically by use
of an Ince-Strutt diagram which employs the parameters

¥ 2

. (zwo>
W,
2p

q = i]??’

L,
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Letting £ = 34 inches
e
( a ! q
? _;._(_.:_Ln.) .,.4_<_.vw,.,,__J. JRSS U 1
| 780 0.408 0.082
|
| 900 0.356 0.071

In Figure 3-6 these points are shown in the Ince-Strutt diagram,

O Configuration No. 1
q [} O Configuration No. 3

l.o <

Q.8 1 Unstable
o- 6 h \. ’ \
O. 1
b Stable Stable
0.2 1

o) 0.2 0.4 0.6 0.8 1.0 1.2

Figure 3-6. Ince-Strutt Stability Diagram Showing
Relationship of the Facility Configuration.
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It is evident from the diagram that on the basis of this simple, two-
degree-of-freedom, undamped approximation, the configuration selected

for this facility is highly stable. It is believed to be unlikely that
with moderate amounts of damping and coupling to other modes, the complete
six-degree-of-freedom damped system will respond appreciably differently
insofar as stability is concerned. The actual stability of the system.

of course, can be determined from the results of a complete rigid body

analysis.

For Configuration 2 , the condition of stability is given by Eq. 3.16

a + q 1

L. )fl 1
25+a, * 2-po [’_Zs+82 -I-; < 1
J

Using the following numerical constants

o, =T

1, =00

a, = =5¢

e, =3
we obtain

L 1 1
W s{.@ ] 73}
=Oo,+3 +000066 < l

Bence the system is stable.

Lo
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For Configuration 3, the condition of stability is given by Eq. 3.17

a + q<_1

/ \
W[ 2 84.3.+ i Ozs

a y - "Z+a
Ko+ K, Is B, K+ K, ls 8,

[}
y

K, 1 \

1

+ . - L4
+ ;
K+ K, 25 a, ls,"

Using the following numerical constants

K = 2K
1 2
S )
“1s 825 = 7
s = 70
S
al = 10"
a = 60"
2
R = 3
we obtain
(2. 1_1) (.2..1 1.1 _a)
M3 ety T90/'6 3 &*3 15 7)

1
= 0038,4' - 0300,4 s 1

Hence the system is stable,

3.3.5 Calculations for Suspension System of Configuration 2.

In the discussion so far, only a qualitative
approach has been used to arrive at the selection of Configuration 3.
However, it is desirable to obtain quantitatively the responses of the

W7
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onLems of Conflgurationu < and 3 as a‘bettér comparison. Hence, it is
‘desirable to solve the equations of motion by a numerical integration
‘method on a dlbital computer to obtaln the responses of the twvo conflr-

urations.

Suopens1on System Conflguratlon 2 is shown in Flgure 3«7. ‘The
stiffnesses and polar co- -ordinates ()%«; ¢n ) for all 1aolator‘

are calculated and pregented in Tables 3-2 and 3 3.
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N\

Coordinates of Mass-
Attachment Point

(ry5 T, r3)

(65

| 5 84/' Coordinates of Wall-

Attachment Point
(T Tou r3w)

eb xl
ns

Center of Symmetry

J.\
‘W

3 10

m = 11,750 lb.secz/in.
I~ 3.OOx106lb-secz/in.2
I= 3.00x1061b.sec2/in.

1

Center of Gravity

I, = 1,15x10616.sec2/1n. v
Y, PLAN
1 * " 4l s L
bl 376 .i?' 6 .ﬁ h’r:
+ N
ns X\ i
/ N
R b \
1 /] N
ls=61+ j — :
l y | R X
/] Y 1 » 1
/ —Ez=l :
/ - -
/ N
/ N
/ - N\
g . N Nominal Position
/ N of Center of
4 \ Gravity
/ \
/ N\
/ N
/ N

v
2

ELEVATION
Figure 3-7, Suspension System Configuration 2
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Table 3-2

Cbmputed.Ihta For Stiffness of All Isolators of Configuration 2

i

lagor Cnl

S—

1

2 38

3 jbes

b 25

5 38

6

7 -1

8 -318

9 -z

10 -b2s

1 -38
12

144 -2:60 x 10

C
We x—-—

I3
Ibs.

| éﬂN+We

Ibs.

L
L

2. 60 x 10 :ho 5 x
5.73 x 10 43.6 x

7.65 x 10*145.6 x

7.65 x 1oh;h5.6 x
5.73 x 101‘91;3.6 x
2.60 x 1oh-ho.s x

‘2-60 X 10h 3503 X

f o

32.2 x
30.2 %
0.2 x
32.2 x

P53 x

-5.73 x 10
'7 065 x 10

= F

-7065 x 10
-5073 X lo

+ &

e ot e e ———————

fn)l(w/u + Wey—= I)(x ) (k,.), l 5ns [,no
V' " Gos o

Lbs. fua/In IJb/In In. In.
10 41,0 x 10* 5.10 x 103 4.82 x 103 8.9 705
20% 1.2 x 10 5.50 x 103 5.28 x 103 84,0 706
10% 46.2 x 10" 5.7 x 103 5.52 x 103 83.8 706
10* 46.2 x 10* 5.74 x 103 5.52 x 103 83.8 706
10* 4.2 x 10% 5.50 x 103 5.28 x 103 84.0 706
10* 41.0 x 10* 5.10 x 103 4.82 x 103 84.9 705
10" 35.7 x 10% 4.l x 303 b.32 x 103 83.0 707
10* 32.6 x 10* 14.05 x 103 3.84 x 103 85.0 705
10* 30.6 x 10* 3.80 x 103 3.70 x 103 82.9 707
10% 30.6 x 10* '3.80 x 103 3.70 x 103 82.9 707
10“232 6 x 10" ;u 05 x 103. 3.8 x 103 85.0 ' 705
1ohl35 7 x 10 | o x 1o3lh 32 x 103 83.0 | 707

- . 4 -
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Table 3-3

Numerical Data for Isolators of Configuration 2

Iso- [ e
lator “no ! 1 Tiw : | r2w‘_ T3

" . ‘ ih‘. In.' In. " In.f In’ l —Ix]'.i Inolzlbéo'mnc- %g:‘mh.""i:ﬁ.-/m.

1 ﬁgsmf-A§6 4132 k25 532 12 ;-768 |-8° 15' 108° Lo' L4.82 x 103

e e ‘
r3w ' ¢ns Qns | (Kzz)n

2 706 -270 -350 318 398 12 -768 -8°15' 135° 5.28 x 103
3 706 -378 -W8s 14k 180 12 -768 -8° 15' 161° 20' 5.52 x 10
L 706 -378 -h8L -1kk 180 12 -T68 §-8° 15' 198° ko' 5.52 x 10°
5 706 -270 -350 -318 ;-398; 12 -768 ?-8° 15 225° 5.28 x 107
6 705 -96 -132 -k25 '-532T 12 -768 ;-8° 15' 251° 20' 4.82 x 103
7 707 192 228 -k25 ,-532; 12 -768 '-8° 15' 238° ko' 4.32 x 103
8 705 366 M6 -38 -8 12 -768 8° 150 315° 3.84 x 103
9 707 W74 580 -1k -180 12 -768 -8°15' 31° 20' 3.70 x 103

0 707 7% 580 1k ' 180 12 -768 -8° 15' 18° 4O' 3.70 x 10
11 705 366 L46 318 © 398 12 -768 -8°15' Ls5° 3.84 x 103
12 07 192 228 k25 sy 1z 768 87 15", 1% 20" he3zx 207

PN N T e,
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Due to eccentricity, e_, of the center of gravity, the body in the static
position will not rema¥n symmetrical with respect to the capsule, but

there will be small initial translations and rotations. As the purpose

of this analysis is only to compare the responses of various configurations,
it seems reasonable to neglect the initial translations and rotations, and
treated as if it were symmetrical.

the system is

The numerical

W =

<X (¢
1] u

Q
i

&
<
L]

~
P

~
]

values are as follows:

Weight of the body
(nominal minus 10 per cent)

Eccentricity of c.g. on x axis

Nuxber of isolators

4,545 x 106 1lbs.
48 in.

i

= 12

Distance from center of symgetry to

mass-attachment point of n”" isolator, in x

(as shown in table 3-2)

Moment of inertia of 12 mass-attachmené
= 6 R

points of isolators

Natural frequency in vertical
direction

Stiffness of the nth isolator

: Stiffness of the cable

Codbin% stiffness of cable
plus n isolator in series

Static deflgction of nth

isolator

Total length of nth isolator
in static position

Length of the pendulum in static

position

He

1 direction

1.21 x 10° 1n.2

2.19 rad./sec.

_ ws W WexCh | )
K - + > 1b./in.
g cos 6ns n I :
L
= 13.7 x 10" 1b./in.
(k) K,
zZ2 1N
= z——T——' lb./in-
KZZ n + ]%
= (l - 42 ) in.
ns no
= 790 in.
= 768 1in.
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3.4 Danping Effects

3.4.1 Qampiqg_ﬁequirements

The incorporation of damping in & shock isolation
system can be beneficial on several counts. First, the system is
quickly restored toa near equilibrium position vhere it is prepared
to sustain a seccond attack. Second, damped systems in general are
less sensitive to details of the shock input than are undemped
systems. Third, dawuping in the translational modes reduces the eamount
of energy transferred by coupling to the rotational modes, thus
reducin: the anpular displacements and the requirement for rattlespace.

Despite these very significant advancages, only in a very few actual
designs has there been made a systematic attempt to optimize the
demping, both as to type and amount. Perheps this lack of deliberate
attention hes been prompted, at least in part, by the absence in many
design criteria documents of specific damping instructicns or objectives.

Insofar as the first advantage listed above is concerned, it is the
agency usin: the facility which must [ix the time within which the
facility must be restored tc readiness. Admittedly, since the optimum
readiness ti.c from the users point of view is zero seconds, the
selecticn of snv finite time simply represents a reluctant relaxation
of desired performance. On the other hand it would appear to be
desirable tc iinow the time reauired by 21l the shock isolation systems
in the facili’y to regain readiness and to insure thet a significant
proportion of this time is not due to slowly decaying oscillations of
only one or two systems.

In esteblishing performance criterie for the facility studied here, a
tentative minimm demping requirement was established which specified
that all sysiems be damped to 0.1 amplitude in 30 seconds. It was not
intended that this requirements should impose severe design conditions
on the systen, but rather that it be vsed as a target point which could
be made more severce or relaxed if justified by more detailed analysis.
In any cese, the specification of an explicit damping requirement would
provide a common basis for the design of all systems within the facility.

Specific darpin; requirements to achieve an optimum displacement
relative to the capsule can be established only after & comprehensive
analysis of the system has been nade and the influence of sifnificant
system parameters. including the cost of damping and ratilespace have
been evelunted. If the resulting damping requirement from this con-
sideration is less severe than ihat required to restore the system in
~he specified time, the larger amount of damping should be employed.

\
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In Reference 2, it was suggested that an upper limit of damping neeaed
to provide optimum insensitivity to the input waveform could be estab-
lished by evaluating the damping required to reduce the response ampli-
fication factors of a moderately decaying sinusoid to values comparable
to those for the undamped response to a regular pulse. Thus, even though
the ground shock waveform were radically different from the predicted
shape, the shock isolation system would still survive without exceeding
rattlespace and acceleration limitations.

Viscous damping ratios needed to achieve this degree of insensitivity
range from 10 per cent to 15 per cent of critical. The attendant
damping forces then may be very large and care must be taken to ensure
that severe transient ground motions do not introduce large acceler-
ations into the isolated mass.

In this respect it is especially important not only that the amount of
damping be investigated, but also the type of damping. Some types of
damping, even in apparently small amounts, can produce conditions so
undesirable as Lo offset completely the advantages of damping. For

this reason several different types of damping are reviewed here and
their characteristics compared with the requirements of this application.

The requirements for damping incorporated in a shock isolation system
design, then, are that it must

1. Inhibit quasi-recsonances from being generated in the system by
unexpected oscillations in the input shock.

2. Attenuate the oscillations by a specified amount in a specified
period of time.

3. Permit the mass to return to or near to its iﬁitial position.

4. Exert a minimum force on the mass during both transient and
residual motions.

As bases for comparing quantitatively the effectiveness of different
types of damping in fulfilling these requirements, the following
indices of performance are established.

Peak force required to damp the free oscillations of a system
from initial amplitude X, to reduced amplitude AAX, in time tj.
(Index of attenuation) ‘

Peak force required to dissipate a given amount of energy in
a single, forced steady-state cycle. (Index of sensitivity)

54
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Retio of rest force (i.e. ﬂnmnlng force at X (o)) to stiffness
(Index of Terminal Excursion).

Ratic of peak transient deumping force Lo peak damplnr force‘
during residusl motion. :

3.4b.2 Ivpes of Damping

Mechanical devices to dissipate energy may produce
a cuusrant damping force with relative displacement, a force pronor-
_1hmal to ¥ vhere 1< <’2 a force proportional to. X or a force
- vhich is a function of several or all of these. In many deamperc,
however. & sin;le type of demping is sufficiently predominant to permit
e reprosencation of the dawpin:: characteristic by a single function.

some of, the more usual types of damping are

Fyq = Cl sgn X conlomb
’Fﬁ = Cp X viscous
P, = . X077 hydreulic locity dampi
"y T ,3 ydraulic velocity damping
Tqg = C, 22 quadratic
where
Fy= damping force
¥ = displacement

c a ccnstant

In addition to devices exhibiting these properties, there is a class
of practical dempers whose principle of operation involves the flow
of a compressible fluid and which produces damping forces dependent
in var-in: percentases on displacement, velocity and time. Both
liquid anﬂ pneu a1ic springs fal] in this latter category.

34020 ,cnivelent Viscous Damning Ratio

Of the tvpco of demping noted above ib is onlv the
viscous damping which with a linear restoring force yielﬂs 8 linear
differeniial cqration of motion for the system of which it is a com-
ponent. Taus, il i3 convenien: for the purpose of analysis to relafe ‘
the performances of sysLems conia’ ninr nonlincar demnin; with an equiva-
viscors cas The use of an cqvivalent viscous dampin: ratio”

1

lent
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as an indication of the effect on a system of nonviscous energy

~ dissipative mechanisms can lead to erroneous conclusions, however,
unless interpreted in strict accordance with the definition of the
term. The damping ratio of a linear, wviscously damped system is defined,

C = L _
T~ 2wm
where
'{ = viscous damping ratio
¢ = viscous demping coefficient
w = Jk/m
= stiffness of restoring element

k

m

supported mass
The viscous damping force, a linear function of velocity, is

Fgy = cX= 2% wmk

For the linecar system, the damping ratio, ° , is the ratio of the damping
coefficient, ¢ , to that damving coefficient, cy , which produces a
damping force which will just inh1bit an oscilla*ory motion of the

_ oupporled 1Nass.,

It 1s sometimes convenient in dealing with systems which have non-
viscous damping, and lirear restoring forcesand which are exposed
to steady vibrations to relate ‘their peak responses to the viscous
case by the means of an "equivalent viscous damping ratio",le .
To determine Ze it is assumed that if the energy dissipated by damping
in a nonviscous system during a non-decaying forced cycle is the same
as that dissipated during an equivalent cycle by a viscously-damped

. system of the same damping ratio, the peak responses of the systems
will be identical. :

The vork done or energy dissipated by damping during one nondecaying -
cycle of a viscously damped system is

W vrqwxg = 2T g n(w xo)

(Eq. 3.39)
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Consider, now, a system with a constant friction force Fgc such that
chz K sgn X
The work done by such & system per cycle is

W= hFoch , h o | (qu 3.40)

Egquating Eq. 3.39 vith Eq. 3.h40, we obtain an equivalent viscous damping
ratio for the constant friction system -

> v: ————i—?F' &
7e1 Mmw Xy

which implies equal ehergy'dissipation‘per cycle fdr the two systems..
Similarly, iT ve consider & systen vith‘a-lihéar réstOring force but
a darmins force proportional to the square of the velocity, thus
Fyn® °2k2
the work per non-decaying Cyéle is

8c2'X(3,w2

and the cquivalent damping ratio ; es 1s

,‘k uC2xo
~e2 " “3Tm

Note that we stipulate only that if §={eq= ‘:eg the energy dissipation |
per steady state cycle of these three systems is the same. - Nothing

is said about the comparative rates of decay of oscillations of the
systems nor about the relative magnitudes of their damping forces. -Also
note that the equivalent viscous demping ratio for nonviscous systems,

as defined above, 1is not the ratio of damping of the system to the -
~critical deamping of that seme nonv;scous system.
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3.4.2.,2 Index of Insensitivity

We defined the energy dissipation for & single steady
state cycle as the index of insensitivity of the system to the shock
fnput. Thus the "equivalent viscous damping coefficient” is this index.
Comparing peak damping forces needed to achieve the same equivalent
viscous damping coefficients, we find

Fa T -
Lo -

Fay T 0.785
Fyv 8

Thus for the three systems, coulorib damping will provide the same degree
of insensitivity with & lower deamping force.

To gain some idea of the magnitude df the coulomb damping force needed

in the vertical direction in the system proposed for the facility con-

cidered in this stud¥, in order to obtain an equivalent viscous damping
ratio of 0.10, we

§ep = 0.10

W = 2,20 radians/seconds

&
n

2,833 feet
32.2 feet/seconds2

1]
]

then

Fae - €1
Weight 2g

Thus the acceleration of the mass due to the damping force would be

0.0668 g.

3.4.2.,3 Index of Attenuation

The second basis selected for comparison 1S the pesk
force required to attenuete the residual oscillations by an amount
Xo (1 -@) in a time t3. For the viscous system with smell demping
ratios; i.e., T <020,

_ 2w 1,,(-)
2!




T RS ————— == ————————..

WL TDR 64-53

For the coulomb damped systenm

me:‘{o(l 'Q)

Fge =

2ty
then
Pae | fl -a.
SRR
(1 -a

Since the ratio pzn (&) J is less than unity for all values of q

less than 1.0, the peak damping force required to produce the same
attenuetion in a coulomb dauped system is always less than that

needed in e viscous system. A similar comparison will show that the
peak damping force of the quadratic system will be higher than that of
the viscous system for the same attenuation. '

Using the system dimensions of the previous example and letting
Q = 0.10, t7 = 30 seconds we obtain

Tde - TuX 1 - )
5 2t &

= 0.00912

The acceleration due to the damping force needed to attenvate the systcem
to 10 percent amplitude in 30 scconds then is small. Thus, 1if the
system 1s to incorporate 10 per cent equivalent viscous demping in

order to provide the insensitivity specified, the time to demp free
oscillations to 0.1 of their peak oscillation will be much less than

30 seconds.

3.4.2.8  Tudex of Terminnl Lxcnrsioq

It is desirable for the system to return near to
its initial position at the cessstion of motion. The difference
between the initial and terminal positions is called here, the index of
terminal eicursion. For all types of damping forces which are
functions only of motion, the terminal excursion,of course, 18 zeroc,
For the coulomb damping case, however, the final position of the
system 1s dependent on the details of the system and the input,
but it will fall between limits which may be defined:

F4
- -t
8nax— t K
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In terms of the equivalent viscous damping ratio
X
m C; o}

- 1
51}13.}{- i )

‘Substituting values from the previous examples,

O .0y = * 0.4U5 £t |

For an equivalent viscous damping ratio of 0.10, then, the friction
band for the coulomb damped system will be about one foot.

3.4.2,5 Transient Forces

The peak damping forces which have been considered
in the previous paregraphs are the maxime which occur during the residual
oscillations of the mass; i.e., after the shock motion has ceased. During
the transient period of the oscillatlon, however, large relative
velocities and accelerations can occur and damping devices which
generate forces as functions of these motion parameters may produce
forces during this period which greatly exceed the forces occurring
.later during the free oscillation.

For example, consider & viscously damped system of the dimensions used
earlier; i.e., with a damping ratio of 0.10, The peak acceleration
in g's due .o the damping force occurring during steady state
oscillations is

de_0.0668 _ . '
w -o-.-,.(vas— =0. 0851 g's

During the transient phase, however, the peak ground velocity is given
in Section 2.0 as 38 feet per seond. If the motion of the mass at
this instant is small, the peak acceleration introduced into the

mass by the damper at the moment of peak ground velocity is

FdV = 2 ; th

W

= 00519 g

g




WL TDR 64-53

It is evident that it is undesirable to transfer accelerations of this
magnitude to the load even though in the viscous case they occur out-
of-phase with the peak accelerations occurring during residual
oscillations.

For a quadratic-damped system of the same equivalent viscous dmnping
ratio, the transient acceleration is much higher. Thus,

2
Tr
Faq _ 3o x
= —E)T.T-3-73 g

‘The maximm force that can be transferred to the mass during the transient
phase by a coulomb damper, of course, ig (Fgc/W), which was calculated
previously for the conditions of the example as 0.0668 g.

3.4.2.6 Summary of Coulomb and Velocity Damping

From the above discussion, it is evident that neither
coulomb nor velocity damping, incorporated in a system rigidly connected
to the shock source,meets all of the requirements established as
desirable in this applica.tion. While use of the coulomb-damped system
results in lower forces transmitted to the mass and in rapid attenuations,
it does not permit the system to return sufficiently near to its
initial position. On the other hand velocity-damped systems which have
a terminal excursion of zero, transmit very high accelerations if the
transient ground velocities are high. This latter point is of
particular significance when it is noted that in practical sysiems,
few damping mechanisms give a damping force linearly proportional
to velocity, but that their characteristic is much closer to the
quadratic case.

If the lsolator is not rigidly attached to the ground and the mass, but
is in turn supported by a flexible element such as a cable which will
not take a compressive load, and if the transient ground acceleration
is in the downward direction, a high transient damping force cannot

be transmitted through the isolator to the mass. In this case, however,
a high velocity damping characteristic in the isolator will reduce the
response of the isolator possibly below that of the input and tend to
cause the flexible element to slacken. High accelerations are intro-
duced into the system, then, as the cable again becomes taut. This
problem is discussed more fully in Section 4.0.
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3.4.2.7 Other Damping Systems

In exploring other damping systems whose characteris-
tics might approach our requirements more closely, we start basically
with a velocity-type damping function since we wish the system always to
return to its initial position. Our principal objective is to reduce the
effect of the transfer of high transient accelerations from the ground.

Consider, for example, the visco-elastic system shown in Figure 3-8. Here
a spring of stiffress Nk has been inserted between the viscous damper

and the supporting structure. For residual oscillations where the™:
damping forces are small, the system behaves essentially like the simpler
viscously-damped system discussed earlier. At large values of Z, however,
the deflections of spring Nk increase, mitigating the transient damping
force transferred to the mass, m.

In Figure 3-9, the system has been altered by replacing the lineer
spring k with a nonlinear one, changiny the damping force Fp to the

more general expression c(x - y)P and adding coulomb friction. This

type of system is essentially the mechanical analog of those compressible
fluid-filled devices in which damping is obtained by the viscous flow of
the fluid. Such devices include both liquid and pneumatic springs.

The differential equations of motion for this sytem are of the third
order, and the presence of the nonlinear elements precludes their solu-
tion in closed form. However, something of the system behavior can be
noted by inspection of the system shown in Figure 3-10 and the analog
shown in Figure 3-9. The nonlinear spring provides the basic static
force-displacement relationship for the fluid stored in the cylinder
and tank, while the combination of the spring ko in series with the
damper is representative of the effect of the rate of flow of fluid
through the throttling device. The coulomb friction is no longer the
principle source of energy dissipation and has been included in Figure
3-9 only because some friction is inherent in all these devices.

Since by careful mechanical design the coulomb friction can be made
small, the system will always return very near to its initial position.
The spring k2-damper combimation can be sized to provide the needed
residual damping; their relative proportions will govern the peak
transient damping force. It is still desirable, of course, to keep n,
the exponent of velocity in the damping term as close to unity es '
possible. Several methods for controlling to some extent the value of n
are described in Section 4, as are the limits of obtaining desired per-
formance characteristics with given load, frequency, damping, and .stroke
requirements, uging a given fluid. ‘

An isolator employing damping in this manner, then, is considered to be
most promising for use in facilities of this type.
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3.4.3 Damping in Inclined Isolators

If the vertical and horizontal isolators are essen-
tially independent, as in Suspension System Configuration 1 , then
individual damping characteristics can be selected to satisfy the damping
requirements listed earlier in this section. If only a single set of
isolators is used, however, and the isolators are installed in the in-
clined pendulum arms as in Configurations 2 and 3 , they must provide
the damping both in the vertical and the horizontal directions. Thus,
additional constraints are imposed on the damping attainable in the two
directions which are functions of the dynamic characteristics of the
body, the angle of inclination of the pendulum arms and the pendulum

attachment points.

The following simplified analysis has been made to provide an indication
of the damping ratios which can be obtained horizontally for a glven
vertical damping ratio. As in the evaluation of types of suspension
systems presented earlier, the springs are assumed to be linear and, in
addition, an equivalent viscous damping coefficient has been employed.

The calculated ratios, then are indicative of sensitivity to input
shock characteristics, but -not necessarily of attenuation or response to

~ transient motions of the capsule.

This analysis is intended to serve only as a guideline in selecting damp-
ing characgeriatics for final evaluation in the rigid body analysis of
Section 5.0..

Referring to Paragraph 5A-T, it is shown that the damping force can be
represented as

(F]2 = e (8

D-

o = Damping stiffness matrix having elements representing

vhere [(]
force/unit velocity

[, = Velocity matrix naving elements representing rate of
change of displacement

lbglecting’effbct of rotation on stiffness matrix, we get
(¥l - [, [K2{ 8], + bL, [, ] [4])
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For a two-dimensional figure, this can be written as

Fg cos ¢n sin ¢n o] 0 jn fén
Fg -sin ¢n cos ¢n 0 K: én
n

fcos § - sing rBé |
* sin ¢n cos ¢n -rlé

L

r L]
0 K:' sin§_ 8. T, CO8 g, t T sing

. . B
0 K: cos A r, sin $, =Ty co8g

[- n sin @ sir.¢n(r3 sing - r, cos¢n)
= kKP< |, + B
i l. fy-cos 4, cos¢n(r3 sing, - rjcosg))

Therefore, horizontal damping force for the system
F}I; = K:{(n sin ¢n +p sin ¢n(r3 sin ¢n - r, cos ¢n)}
Referring to Paragraph 3.A.2,
sin ¢n £ sin ¢ns + cos ¢ns . é @
_ cos ¢n £ cos ¢ns - sin ¢ns .ﬁ;&
" s:l.n2 ¢n= sin2¢ns + cosz¢rjs (ji' ¢)2
sin § . coé¢n= sind . cosf _ {1 -(é ¢)2} - g1n2¢ns. é -#
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Substituting the above values in the expression for Fg, we obtain

Fg = KS {jn (s:ln¢n8 + °°8¢ns' ..'J‘f- .$)

+ ér3 [sin2¢ns + ¢°32¢n8( :Zf¢ ) +’2 sj.n fog 08 ¢n8"zg ¢]

. 2 .
- Bry [sin g - cosg (1- %)- sin® fhog :é g+ cos“d Qfdj

n S

rd

g
-l - —— e -

9

-
-

-
— e o o o | ——

-

—

|
|
|
|
|
I
|
}
|
vy
2 %
Figure 3-11. Change in Length of Isolators for
lateral Displacement
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Referring to Figure 3-11, for isolators on left side

- =

cos (¢n +-in€¢ )

. +tr
11_(£n) _ 4 { s '3 :} ag
dt F o th 5) at
)
)

g

tan(¢n+1

lﬁ

/4 -

¢ .

= L+ P TEE
cos(¢+e ' 83¢

n

}

w

:(n + —iﬁ—>1¢ s for small angl‘es

(s* T3

x{ ¢¢ when—ﬁ——<<¢and(.g{
s 'n [+r3 n )

For isolators on right side

£+ r,
{, = r
cos (¢ -T¢)

~y

%cg)=-<g-zﬁkg (¢
-- (g4

L) = W)y

vhere subscripts refer to left and right sides. Therefore,
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I"g = .21{ {él sin § - éal [s:l.nzgi‘l + cosé%_(jﬁﬁ )2]
+ Br [sinﬁil cos¢l (1- ’%a-éf )]} |
+ 21(12) {Z.a sin¢2 + éaz [sin2¢2 + coaa¢n( é_ ¢)2]

+ér [sin¢2'. eos¢2 (1- -{-:-Q;]}

7 = zé’ {zsgzésw pf (-a, % + 0}
v 2 {18¢2293+ Bd, (a g, + r)}
= 2K ¢l{is dg+p(r-a ¢1)}
vy b [l 6 (r ey 4))

Substituting the following numerical values:

p242
Neglecting YL- s and for small angles, we obtain

s
]

840 inches
¢1 = 0.155 radians
¢2 = 0.072 radians
r = USO inches
= 120 inches
a, = T20 inches

ICE = 21(2 pounds per inch




WL TDR 6L-53

Fp = 2K (0.155) { (840)(0.155)8 + B [Us0 - (220)(0.255) }
+ K0 (0.072) { (840)(0.072)8 + 8 [ 50 + (720)(0.072)] }
- xcf (4%.78 + 170.2 B)

The vertical'rlxatural frequency w, = 0.35 cycle per second
= 2.19 radians/second

e
2(K, +X,) = nw? vhere X = 2(K + K,)
= 4.8 m
X = 4.8 m vhere 2K, = K,
X = l.6m and K, =0.8m

Horizontal component of the stiffness

2 (Kls:ln2¢l + K281n2¢2)
2 {1.6 m (0.155) + 0-8m(0.072)2}

%a

0.0851 m

Now LUH = j—? + Z = /0.0851 f%- 0.74 radians/second

For steady state vibrations, let

g = @ sincdt

g = wn¢mcos Wyt

From the shock spectrum (Figure 2-4), the maximra horizontal displace-
ment of the center of gravity is 24 inches.

¢, = g’-,’fa = 0.0286 radians
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Assuming the magnitude of maximum rotation B 1s the same as ¢m’ that is

g *p
For vertical motion, damping ratio

L L e

2wv.ml
= 2o m
v
D 2
K = gngm

For horizontal motion, damping ratio

: _ Kf (k4. % + 170.2 B)
H = D

2wH.m . ’Qs¢

Substituting the values of lcf and B, we obtain

(44,78 +100.29
§y cwym - 2wgm . L .33@'

Sy =

w i

- 0016 !_’_U_Y_ . €

o
&

l
o
&
l

T0
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3A  DERIVATION. OF FQUATIONS OF MOTION FOR THREE -DEGREES-OF-FREEDOM
PENDULUM SUSPENSION SYSTEM

SECTION 3 APPENDIX

3A-1 Reduction of Equations of Motion from Six Degrees of Freedom

to Three Degrees of Freedom

The equations of motion in full for a six-degree-
of-freedom system are shown in Paragraph 5.3.

to describe the three-degree-of-freedom system by setting O,
a, 7 equal to zero. In order to reduce the complexity, the

These are reduced here

e, rr
dafping and

the effect of rotation of the body about its center of gravity on the
stiffnesses are not included.

The equations become:

cos ¢§ O sin
0 0O O
_-sin ¢ 0 cos¢

u 1
cos¢n 0 sin¢n 0
+Z< o o of]|o

-ein¢n 0 cosg | |0

Lt <4 L

0
J 0 , 0O O
2 - L sin¢n o}

A - - .

- %

o

| [ 2mf¢’ + mf&'

o0 o
ol - ni?]

cos¢n 0 sing

0

0

0

-sin¢n 0 cos¢n

0

coa¢n

.cos¢n 0 -sinf _'

=Y

3

Tl

-Or 0]

3

Orl

0 -rlo

0

o
0
0

o v o

0
0
0

-cos¢n 0 -sin¢;

0

sing O cosg

0

-

%ro'
rOrl

Oer O
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Now
[cosf 0 sing 7 [0 0 0] ['cos¢n0 -sing] [0 r, 07 [0]

o o0 o0 0 00 00 O |pr, Or

:sin¢n Ocos¢n 0 0 K sin¢n0 cos¢n- 0 -r O. -O

BK_ sin¢n (r3 eing - r, cosg )

0

_'3";, cos{!’n (r.3v sin¢n- ry coa¢n)-

The equations become

(anjé + mfsi.) cos @ + (m}?.- mjaz) sing
+3 {Knsin¢n(jn- ’Qno)}+ BZ{Knsin¢n(r3 ‘a:ln¢n- Ty cos¢n)}+ (mit.o) =0
| (Eq. 3A-3)
(mj- mléz) cos@ -(zmjgf + nlg) sing |
+s {Kneos¢n(in- sz)} +p3{K cosf (r, sing - rlcos¢n)} + (nZ-mg) = 0
(Eq. 3A-k)
Ip +3 {(r3)nl€n [sin¢n(1n-%°) + B six:ﬁn(r3 sin¢n- r, cos%)]
- (rl)nKn [cos¢n(fn- Y no) +8 cos¢n(1f3 sin¢h- ry cosf n)]} =0
| (Eq. 34-5)
Multiplying Eq. 3A-3 by sing and Eq. 3A-b 'by co's¢ and adding, we get
(wf- i) + £k (4,- ) [otn §. o1o+ cos ¢ cosf)]}
+ sij{lcn(r3 sin¢n- ry cos¢n)[sin @ s:ln¢n+ cos @. cos¢n]}
+ (mifo) gind + (m'z°o- mg) cosf = 0 (Eq. 3A-6)

Neglecting centrifugal acceleration, m1¢2, with respect to longitudinal
acceleration mi, Eq. 3A-6 becomes

T2
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mi +2{Kn cos( ¢n'¢) [(fn- ‘eno) + B(r3 sin¢n- ry °°3¢n)]}
+ (mk‘o) sind + (m'Z.o- mg) cosf = 0
(Eq. 3A-7)

Maltiplying Eq. 3A-3 by cosf and Eq. 3A-h by sing and subtracting the
latter from the former, we get

(2nlf + ndf) +3{i (-4, ) [cos §. sinf- sin 4. cosf]}
+ 52{Kn(r3 sin¢n- rlcoa¢n)[cos d. sin¢n- sin §. co's¢n]}

+ (mifo) cosf - (m.io- mg) sind = 0
| (Eq. 34-8)

Neglecting Coriolis' acceleration 2 m£¢, with respect to tangential
acceleration mif, Eq. 3A-8 'becomes

m€¢ +2{K sin(¢n ) [(I 40) + a(r sing - r cos¢ )]}
+ (mXo) cosf - (mzo- mg) sinf = O
(Eq. 3A-9)

Equation 3A-5 becomes
18 +s{k (4 -2 Mr sin¢ r cosg ) +K B(r sin% ¢°8¢n)2}

n “no
- Ip +2{K:(r3sin¢n- rlcos¢n) [(fn lno) + B(r3 sing - v, cos¢n)]} =0
(Eq. 34-10)
For ,e’ and ¢n of the nth isolator, the following conditions are to be
satisfied:
f sing = Leing+d sing (Eq. 3A-11a)
foco8 8, = jcos¢ - 18 + ‘lna cos ¢4 (Eq. 3A-11b)

3A-2 General Equations of Motion for Three Configurations

The general equations of motion are derived for
Configurations 1 through 3 (Figures 3-1 a, b, and c) The following
assumptions are made for simplicity: , :
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(1) Pendulum angle @ 1is small
sinf = ¢ .

(3) Second order nonlinear coupling terms (e.g., ¢2, Bg etc.)
are neglected.

(%) The oody 1is assumed to be symmetrically suspended
oo ns and r are equal and opposite in sign.

From Eq. 3A-1la and b

For inclined isolators

ﬁn ¢n =ﬂ¢ +lns ¢ns (Eq. 3A-12a)
and [ = Ll - L (Eq. 3A-12b) )
¢n =‘ZZ1'¢ +%§ ¢ns =f¢ ¥ ¢ns o (Bq. 3A-13) .
and £, = Lk + 8 8 ’Qa’ as ’Qns =’?no +6ns
TR R ENC N AR "
=0 + 6ns vhere p = /- g (Eq. 3A-14)

For horizontal isolators, which are assumed to remain horizontal during
dynamic motion, Eq. 3A-11 a and b give

Po = Pns
deing = (f."n- 4 ;) sing .

ns

as the horizontal isolators do not carry vertical load

ns 4:3 = 40
fain¢= (,Qn- ‘&o) sin ¢ns = (.én- 'eho)

_ X
as $.o =3 (Eq. 3A-15)
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Eq. 3A~7, 3A-9 and 3A-10 can be written as follows:

me+ F'+ (m')EO) sing + (m'z'o- mg) cos@ =0 (Eq. 3A-16a)

m @+ Fg+ (mic'o) cosf - (ni'z'o- mg) sinf = 0 (Eq. 3a-16b)

I3 + My | =0 (Eq. 3A-16c)
~here

Fy = E{Kncos(¢n- P-4 )+ B(r, sing - r) cosg )]} (Eq. 3A-17a)
F¢ N E{KnSi“(¢n'¢ )[(En' Ino) * B(rB sing - vy c°s¢n)]} (Eq. 34-170)
MB = Z{Kn(rBSing}n- rlcos¢n)[(fn- [no) + B(r381n¢n' 1'1°°8¢n)]}

(Eq. 3A-1T7c)

The terms Fy, Fg, and M_ can be broken down into the horizontal and
inclined categories of Qhe isolators.

Fg = Fp(H) + Fy(I)

Fg = F¢(H) + F¢(I)

M{3 = MB(H) + MB(I)

The following suboperations are performed to reduce the expressions in
%n 3A-17:

cosg = 008(+¢ + ¢ns)
.Ln s
£ cos é -$ . cosg - sin Zf¢ - sing
4 cos¢ns- Z¢ « sin ¢ns ' (F‘q' 3A-18&)
stng, = stnlEg s )
“n

= gin -lf: @ « cos ¢ns + cos ;f' @ sin¢ns

= --¢ . cos¢ns + sin¢ns (Eq. 3A-18b)
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cos(§25n -¢)

mn

1

e

cos[QSns + ¢(‘L -

“n

n

1

sin(f_-#) = Sin[¢ns+¢(zf - 1)] '

¥ sin ¢ns' c'os¢(zé- - 1) + cos¢ns. sin¢(,“2-t- -1)

?=’sin¢

B cos(d- #)
B cos(f - #)
B sin(g - #)
b stn(g - 9)

Therefore

ns

. c:os¢n
. sin¢n
. cos¢n

. sin ¢n

Fy = g}(u) + 32(1)

= %{Kn cos(¢n- @) [(Zn-.(’no) + 6(r3 sin¢n -1 cos¢n)]}
+ }Z{Kn cos(g - ¢)[(fn-,€o) + B(r3 sinf - r, cos¢n)]}
= ‘E{-Kn¢(fi-" -1) [€¢+B(r3 Bin¢n- ry cos¢n)3}

n

)]

cos ¢ns"¢ (:Z- -1) Sin¢ns
‘n

+ ¢(-2‘- -1) . cos¢ns

n
£p cos® 1)
£8 sin¢ns
£ sin¢ns

A 2
=B sin ¢ns

ns

. cos¢ns

. cos¢ns

cos § .cosf (%— - 1) - sing__. sin¢(,—5‘- -1)

(Eq

(Eq.

(Eq.
(Eq.
(Eq.
(Eq.

. 3A-18¢)

3A-184d)

3A-18¢)
3A-18¢)
3A-18¢)

3A-18h)

+ ‘I?Kn{ [coe¢ns-¢(é - 1)§1h¢n's] [(1'- %) + 6n5:|+ 3[1'3sin;23nscos¢ms
- rlcos2 ¢ns]

p3
2% {(P+5,) cos bs)
" Tsin ¢ns = 0, and zry = 0

76
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s Fys= 5 K sin( ¢n- ) [(’en"éo)+ B(r3 sing - r, cos¢n)]}
z {K sin(¢n- @) {(In-,éo)f B(r3 sinf - r, cos¢n)]}

z
SR 2
+ ‘;'Kn{[sin¢ns+¢ ()en - 1) cos¢ns] [FH 6ns]+ B[r3sin bs
- r, sing . c°s¢ns]}
- E{Kn(lgs + Br3)} + {{Kn(m bns)[¢(:2f - 1)c°s¢ns] + B [b]}
(Eq. 3A-20)

+

where [b:] = sin¢ns(r3 sing - T, cosg )

o MB = § {Kn(r3 sin¢n- rlcos¢n)[(fn- ‘ého) + B(r3 Siﬂ¢n" Ty °°5¢n)]}
+ ‘I’:{Kn(r3 sin¢n- ry cos¢n)[(fn- 'éno) + B(r3 Sin¢n'1‘1 °°3¢n)]}
= § {Ku(r)U08 + pry)} _

+ 2K {[r3(2§¢ . cosf + sin § )-x(cos ¢ne'}ﬁ. $-sin ¢ns)_l X
[(P+ bns) + a(r351n¢ns- r, cos ¢ns)]}

p2
H
z Kn{r (A;d . cos g +eing )P+ bns)}
+ Z Kn{ (-r;)(cos ¢ - Zﬁ-;& . ein g )(P+ bns)}
+ ? Kn{ Sr3( f-;¢ cosg + sin¢ns)(r3 s:ln¢ns- r, cos ¢ns)}
+ ? Kn{ a(-rl)(cos B ﬁ¢ sin¢ns)(r3 sing - Ty cos¢ns)}
T 75Ug + pry))
PEK [P+ 8 ) 1{ g - cos ¢ )}
* ? Kn{rl(f:)+ bns)(:é g - sin ¢ns)}
+ ? K 8 {(r3 sin ¢ns' r, cos ¢ns)2}
= % {Kn r3(1¢ + Br3)}
+ %Kn{z':gs (e+ 6n8)(r3 cosg + r sing ) + ﬁ(r3sin¢ns-r1coa¢ns)2}
(Continued)

7
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+
MM

K Ty (g + 8 r3)}
{788y [4] o [}
where

[c] = (r3 sin¢ns- r, cos¢n8)2

and [a] = (r3 c°8¢ns+~ r, sing )

Substituting the expressions of Fy, F4, and Mﬁ obtained in Eq. 3A-19,
20 and 21 into Eq. 3A-16 a, b and ¢ we get

mk + %{Ifn(P+ bns) cos¢ns }+ (mifo) sing + (mio- mg) cos@ = O

(Eq. 3A-22a)
nlg + F {x (Lp+pr)} + Fx {(p+ bns)[gj(f - 1) cos ¢ ]
+8[v]} -+ (m')Eo) cos @ - (m'z'o- mg) sin § =0 (Eq. 3A-22Db)
8 + z + + -j- ! -
B+ g {Kry U - er )] {0 %) []* 8 [2] (E: o)

where

[t] = stn ¢ns(r3sin ¢ns- r, cos ¢ns)

and [¢] = (r3 sin ¢ns- r. cos ¢ns)2

1

and [4] = (r3 cos ¢ns + 7 sin ¢ns)

In the above equations

Zx. - =
< Kn cos ¢ns . bns mg cos @ =0
and ?Kn. cos ¢ns . 6n8-¢- mg sin § = 0

Let X = U sinf and zZ, =U, cos¢°

vhere U is the resultant acceleration acting at an a.ngle¢ with the
vertical axis. °

T8
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Hence Eq. 3A-22a, b and ¢ reduce to

mi+ % {Knpcos¢ns} + mijo cos(¢o -¢) =0 (Eq. 3A-23a)
. [
nid +3{c A +pra} + Zx {(p+ Boe) - 8 - o)
-pd °°s¢ns +B [b]} + mijo sin(¢o -¢)=0 (Eq. 3A-23b)

I8 + ;{Z{Knr3(f¢ + 5"3)} ' %Kn {t P2+ 8,5 [a] + s [c]}= °

(Eq. 3A-23c)
By making the approximation: 9((& , we get
j = ,Qs + e: ,‘(8
- ~ |
En =£+r3=18+9+r3—-ts+r3
Also
A = (L +p)=p, and I =nk
The equations then reduce to
K cosf
e + 3{ ns}P + U cos(¢ -@g)=0 (Eq. 3A-24a)

AN DI MR . E T E i
Ks§ cosrls K [v] .
+¥{-gz€-:—+—;_—3-)—-}¢+%{-hs-}a+vosin(¢o-¢)=o

, (Eq. 3A-24b)
; +§{ } {“}M{;dﬁ)
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let
D - z{wa.s_}
o I m
b = {Kn cos¢ns K cos¢ns
1 I ru(]s + r3) mZ
K K .8 cosp
D, -_-%{-r-n-’l} + ‘Iﬁ_‘,{n mU?_xj+r3) nsJ
Kr K [v]
- z
Dy 'H{rﬁf} ¥ I{nm).”s }
. € 4 [ |
1 I| .2
mR (ls + r3) )
3
D = Z{.__3Kn13r }4- 2{ § &.6 [e] J
2 " H | 2 Tl + x)
2 l
D.=2FE3}+2{5_2}
H mRZ I mR

# + #(ne + 1,) + (D))

B+ ¢(Dig + Dé) + B(Dé)

- ifo sin(¢° - @)

0

(Eq. 3A-25a)
(Eq. 3A-25b)
(Eq. 3A-25¢)

For the configurations under consideration, it seems reasonable to assume

that ¢°>> @

g -8%8

ﬁo cos(¢o -g) = ﬁo cos¢°

¥z
)

and U sin(¢o - @) = U sin¢° = xo
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Eq. 3A-25a, b and ¢ further reduce to

¢+Dp =-Z (Eq. 3A-26a)
g +¢(pe+ D)+ B(D3) ==X (Eq. 3A-26b)
B+ #(Dje+ D) +p(D) =0 (Eq. 3A-26c)

3A-3 Evaluation of Coefficients for Each Configuration

The initial angles of inclination for pendulum in
Configurations 2 and 3 are assumed to be small (@,,< n/6), hence the
following approximation is made:

si.n¢ns 2 ¢ns and cos¢n g 1

K cosf
p =< -2___18
o I m
ZKV
Configuration 1 -
Configuration 2 %IS
2(K +K))
Configuration 3 Kl - KZ
I K cos¢ns ) an ¢°8¢n8
l Im " + r3 I mIs

2Kv 1 1
Configuration 1 - {ls oy 2:}

1 1
Configuration 2 m{ Ya. "1 }

K + K
Configuration 3 r%{-zﬁ_—;; + -1:-'3 — - 572 j}
Ly . o

2
D =2I_cn, +2K c°8¢n36ns
.+
2 Hmnm Imj,B r3

vl
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L 2K.,6
Configuration 1 :H + o 'fs %9‘2)
2Ks 8
Configuration 2 W

K

4]
2
Configuration 3 %{15'—:%1 + I:T:;}
8

2
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. 1 2
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SECTION 3 __SYMBOLS AND NOTATIONS

Generalized Coordinates

2 ¢ Instantaneous length of the resultant pendulum
) : Inclination of resultant pendulum with vertical axis
B ¢ Rotation about the axis through center of gravity
perpendicular to plane of the figure.
Reference Systems
xo‘l
' ¢ Ground reference system and ground motion
Zq J
X!
.' : Capsule reference system (parallel to Xo - 2,)
Z;
> ¢ Inertial reference system, origin at center of gravity
2, J (parallel to X-2)
Ground Accelerations
.e ¢ Ground accelerations along xo and Zo axes respectively.
Z
o

Physical Constants for Suspension System

,ﬁs ¢ Length of the resultant pendulum in static condition
(with dead load)

ﬁ“l th
¢ ] ¢ Polar coordinates of n= isolator in static position
ns :
I

{ ¢ Polar coordinates of n®h isolator at time 't' due to
¢n y translation of center of gravity.
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I, : length of the a™® 1golator with zero load

R ¢ Radius of gyration of the suspended mass

ry th

b o : Coordinates of mass-attachment-point of the n

2 isolator in Xi -y - Z& directions, respectively

r3 n 1

1w } th

Yoy S i Coordinates of the wall-attachment-point of the n

r3w Jn isolator in Xi - !i - Zi directions, respectively

C. th

Ons : Static deflection of the n~ isolator

r : X coordinate of an isolator

a, : coordinate of the level of suspension above center of
gravity.

a, : Z1 coordinate of the level of suspension below center of
gravity.

a3 : Zl coordinate of the top horizontal isolators.

ay, : 21 coordinate of the bottom horizontal isolators

X th

n ¢ Axial stiffness 